

FLOOD & DROUGHT BULLETIN

OCTOBER 2025

Table of Contents

INTRODUCTION.....	3
THE STANDARDIZED PRECIPITATION INDEX (SPI)	3
1-month SPI.....	4
3-month SPI.....	4
6-month SPI.....	4
12-month SPI.....	4
SPI ANALYSIS FOR OCTOBER 2025.....	6
1-Month SPI (October 2025).....	6
3-month SPI (August 2025 - October 2025).....	6
6-month SPI (May 2025 - October 2025)	7
12-month SPI (November 2024 - October 2025)	7
STATIONS	8
REFERENCE.....	9

INTRODUCTION

The Flood and Drought bulletin is a monthly analysis of rainfall in Ghana prepared and released by the Ghana Meteorological Agency (GMet). The bulletin provides an authoritative and scientific understanding of rainfall variability which is essential for accurate hydrological modeling, climate change assessments, and effective water resource planning to mitigate risks associated with extreme events like droughts and floods.

Among other services and products, the Flood and Drought bulletin complements the objectives of GMet in line with the National Framework for Climate Services (NFCS) to improve co-production, tailoring, delivery and use of science-based climate predictions and services focused on the five pillars of the Global Framework for Climate Services (GFCS) by the World Meteorological Organization (WMO): agriculture and food security, disaster risk reduction, energy, health and water.

The analysis in the Flood and Drought bulletin is based on the Standardized Precipitation Index (SPI) developed by McKee et al. (1993) for the purpose of *defining and monitoring drought*. Drought is an insidious natural hazard that results from lower levels of precipitation than what is considered normal. When this phenomenon extends over a season or a longer period of time, water becomes increasingly insufficient to meet the demands of human activities and the environment. Drought must be considered a relative, rather than absolute, condition. Drought means different things to different users such as water managers, agricultural producers, hydroelectric power plant operators and wildlife biologists. Even within sectors, there are many different perspectives of drought because impacts may differ markedly. Droughts are commonly classified by type as meteorological, agricultural and hydrological, and differ from one another in intensity, duration and spatial coverage (WMO, 2012).

THE STANDARDIZED PRECIPITATION INDEX (SPI)

SPI indicator, which was developed by McKee et al. (1993), and described in detail by Edwards and McKee (1997), measures precipitation anomalies at a given location, based on a comparison of observed total precipitation amounts for an accumulation period of interest (e.g. 1, 3, 12, 48 months), with the long-term historic rainfall record for that period. This indicator measures anomalies of accumulated precipitation during a given period. In calculating SPI, precipitation is the only required input parameter (McKee and others, 1993, 1995). The SPI calculation for any location is based on the long-term precipitation record for a desired period. This long-term record is fitted to a probability distribution, which is then transformed into a normal distribution so that the mean SPI for the location and desired period is zero (Edwards and McKee, 1997).

The SPI is designed to quantify the precipitation deficit for multiple timescales and can be calculated from 1 month up to 72 months. Statistically, 1–24 months is the best practical range of

application (Guttman, 1994, 1999). The Flood and Drought bulletin of Ghana considers only the 1-month, 3-month, 6-month and 12-month SPI.

1-month SPI

The 1-month SPI compares the precipitation of a specific month with the precipitation totals from the same month for all the years included in the historical record.

3-month SPI

The 3-month SPI provides a comparison of the precipitation over a specific 3 consecutive month period with the precipitation totals from the same 3-month period for all the years included in the historical record.

6-month SPI

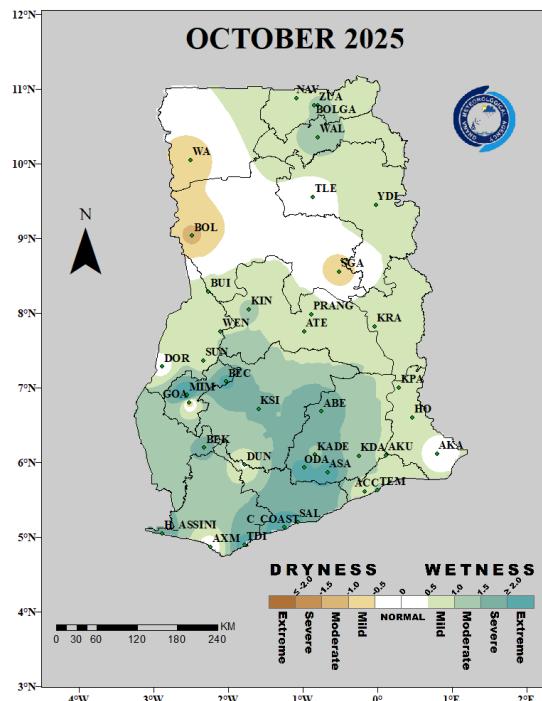
The 6-month SPI compares the precipitation for a specific 6 consecutive months with the same 6-month period over the historical record.

12-month SPI

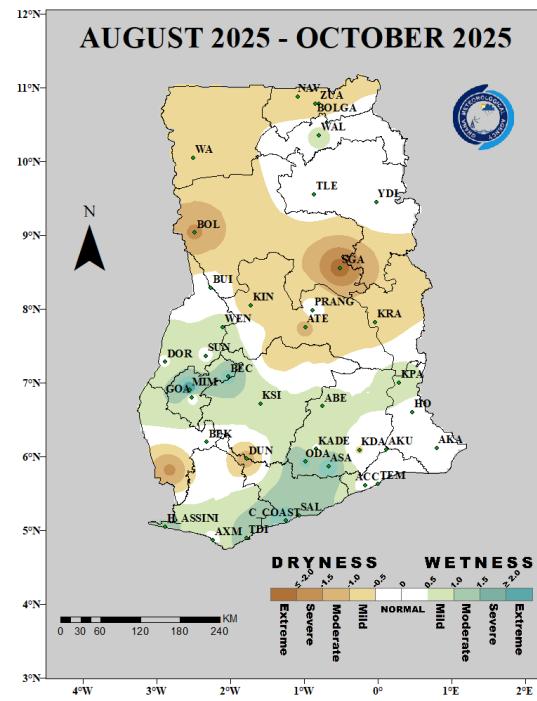
The 12-month SPI is a comparison of the precipitation for 12 consecutive months with that recorded in the same 12 months in all previous years of available data.

These timescales reflect the impact of drought on the availability of the different water resources. Meteorological and soil moisture conditions (agriculture) respond to precipitation anomalies on relatively short timescales, for example 1 to 3 months (SPI-1 to SPI-3), whereas streamflow, reservoirs, and groundwater respond to longer-term precipitation anomalies, for example 3 months to 12 months (SPI-3 to SPI-12) or longer (EDO, 2020).

A real strength of the SPI is its ability to be calculated for many timescales, which makes it possible to deal with many of the drought types described above. The ability to compute the SPI on multiple timescales allows for temporal flexibility in the evaluation of precipitation conditions in relation to water supply.


In the Flood and Drought bulletin, the SPI values for any given location and accumulation period, are classified into nine different precipitation regimes (from dry to wet), as shown in Table 1. As can be seen, increasingly severe rainfall deficits (i.e., meteorological droughts) are indicated as SPI decreases below -0.5, while increasingly severe excess rainfall is indicated as SPI increases above 0.5.

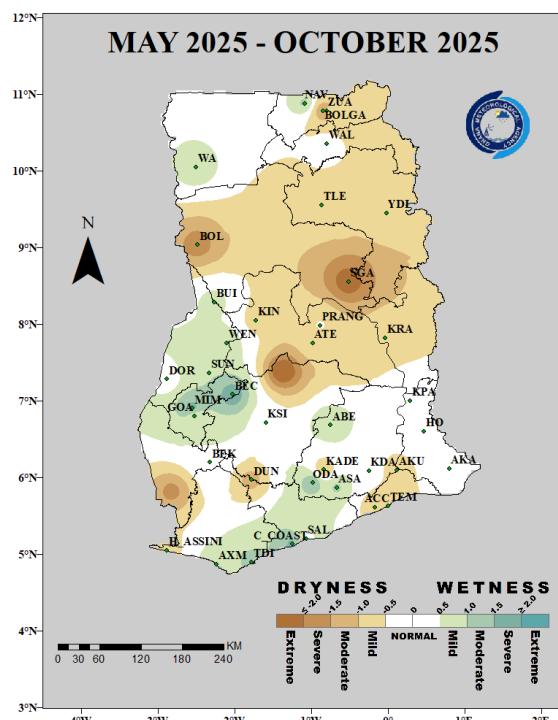
ANOMALY	RANGE OF SPI VALUES	PRECIPITATION REGIME	COLOUR
Negative	Min <= SPI <= -2.0	Extreme dry	
	-2.0 < SPI <= -1.5	Severe dry	
	-1.5 < SPI <= -1.0	Moderate dry	
	-1.0 < SPI <= -0.5	Mild dry	
None	-0.5 < SPI <= 0.5	Normal precipitation	
Positive	0.5 < SPI <= 1.0	Mild wet	
	1.0 < SPI <= 1.5	Moderate wet	
	1.5 < SPI <= 2.0	Severe wet	
	2.0 < SPI <= Max	Extreme wet	


Table 1: SPI classification scheme used in the Flood and Drought bulletin

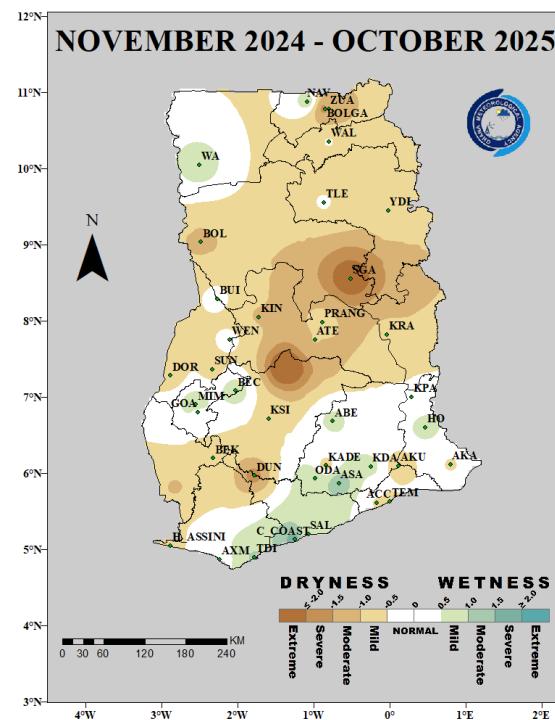
SPI ANALYSIS FOR OCTOBER 2025

The SPI analysis for rainfall in October 2025 has been generated in multiple timescales of 1-month (October 2025), 3-month (August 2025 - October 2025), 6-month (May 2025 – October 2025) and 12-month (November 2024 - October 2025). The maps generated depict the severity (positive or negative) of rainfall anomalies for the period under review.

Fig. 1(a): 1-Month SPI (for meteorological drought): October 2025


Fig. 1(b): 3-Month SPI (for agricultural drought): August 2025 – October 2025

1-Month SPI (October 2025)


Figure 1(a) presents the 1-Month Standardized Precipitation Index (SPI) for October 2025. Mild to moderate wet conditions is seen almost all over the country. Mild dryness is seen in areas such as Wa, Bole, Salaga and Goaso while normal condition is seen in areas around Tamale, Dormaa, Axim and Akatsi.

3-month SPI (August 2025 - October 2025)

The 3-Month SPI shown in Fig. 1(b) reveals predominantly mild dryness across the northern and middle belts of Ghana. Moderate dryness is evident around Salaga, Atebubu, Prang, and Bole, while localized moderate to severe dryness appears near Dunkwa-on-Offin. Conversely, mild to moderate wet conditions are observed over parts of the southwestern and southern coastal areas, including Goaso, Cape Coast, Axim, and Accra. Near-normal conditions are present across sections of the Eastern and Volta regions, particularly around Ho and Kpando.

Fig. 1(c): 6-Month SPI (for hydrological drought): May 2025 – October 2025

Fig. 1(d): 12-Month SPI (for streamflow and lake storage drought): November 2024 – October 2025

6-month SPI (May 2025 - October 2025)

The 6-month SPI presented in Fig. 1(c) indicates widespread mild dryness across most parts of northern and central Ghana. Moderate to severe dryness is concentrated around Salaga, Atebubu, Prang, and parts of the Bono East region, with additional moderate dryness observed near Bole and Dunkwa-on-Offin. Mild to moderate wet conditions are recorded over parts of the southwestern forest and coastal zones, including Goaso, Takoradi, Cape Coast, and Axim. Near-normal conditions dominate portions of the Eastern, Volta, and Greater Accra regions, including Ho, Kpando, and Accra.

12-month SPI (November 2024 - October 2025)

The 12-month SPI shown in Fig. 1(d) reveals mild dryness over most parts of the country, particularly across the northern and middle belts. Moderate to severe dryness is observed around Salaga, Atebubu, Prang, and parts of the Bono East and Savannah regions. Isolated pockets of moderate dryness also appear around Bole and Dunkwa-on-Offin. In contrast, mild to moderate wet conditions are evident over parts of the Western and Southwestern areas, including Wa, Goaso, Cape Coast, and Axim, while near-normal conditions prevail in portions of the Eastern and Volta regions, including Ho and Kpando.

STATIONS

Station	Abbreviation	Station	Abbreviation	Station	Abbreviation
Abetifi	ABE	Enchi	ENC	Sunyani	SUN
Accra	ACC	Goaso	GOA	Takoradi	TDI
Akatsi	AKA	Half Assini	H_ASSINI	Tamale	TLE
Akim Oda	ODA	Ho	HO	Tema	TEM
Akuse	AKU	Kade	KADE	Wa	WA
Asamankese	ASA	Kete Krachi	KRA	Walewale	WAL
Atebubu	ATE	Kintampo	KIN	Wenchi	WEN
Axim	AXM	Koforidua	KDA	Yendi	YDI
Bechem	BEC	Kpandu	KPA	Zuarungu	ZUA
Bole	BOL	Kumasi	KSI		
Bolga	BOLGA	Mim	MIM		
Bui	BUI	Navrongo	NAV		
Cape Coast	C_COAST	Prang	PRANG		
Dormaa	DOR	Salaga	SGA		
Dunkwa	DUN	Saltpond	SAL		
Ejura	EJU	Sefwi Bekwai	BEK		

REFERENCE

Copernicus European Drought Observatory (EDO): <https://edo.jrc.ec.europa.eu/> © European Commission, 2020.

Edwards, D. C. and T. B. McKee, 1997: Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report 97-2, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

Guttman, N.B., 1994: On the sensitivity of sample L moments to sample size. *Journal of Climate*, 7(6):1026–1029.

_____, 1999: Accepting the Standardized Precipitation Index: a calculation algorithm. *Journal of the American Water Resources Association*, 35(2):311–322.

McKee, T.B., N.J. Doesken and J. Kleist, 1993: The relationship of drought frequency and duration to time scale. In: *Proceedings of the Eighth Conference on Applied Climatology*, Anaheim, California, 17–22 January 1993. Boston, American Meteorological Society, 179–184.

_____, 1995: Drought monitoring with multiple timescales. In: *Proceedings of the Ninth Conference on Applied Climatology*, Dallas, Texas, 15–20 January 1995. Boston American Meteorological Society, 233–236.

World Meteorological Organization, 2012: *Standardized Precipitation Index User Guide* (M. Svoboda, M. Hayes and D. Wood). (WMO-No. 1090), Geneva.

Kindly send feedback to:
The Director-General
Ghana Meteorological Agency
P. O. Box Lg 87, Legon, Accra-Ghana
Email: info@meteo.gov.gh
Phone: 0302764926 / 0302777172