

NOVEMBER 2025

CLIMATE BULLETIN

DEKAD 3, NOVEMBER (21-30)

GMET/CLIMATE/0311 25

FORM337

11/3/2025

TABLE OF CONTENT

SUMMARY	4
1.0 OBSERVED CLIMATE DRIVERS	2
1.1 INTERTROPICAL FRONT.....	2
1.2 MADDEN-JULIAN OSCILLATION (MJO).....	4
2.0 RAINFALL, TEMPERATURE AND RELATIVE DISTRIBUTION	5
2.1 RAINFALL.....	5
2.2 TEMPERATURE	7
2.3 RELATIVE HUMIDITY.....	10
3.0 RAINFALL AND TEMPERATURE OUTLOOK 1 ST - 14 TH OCTOBER 2025.....	11
4.0 ADVISORIES.....	12
5.0 APPENDIX.....	13
5.1 TABLE OF STATIONS.....	13

LIST OF FIGURES

Figure 1: Current ITF position for November 3rd Dekad, 2025.....	Error! Bookmark not defined.
Table 1:Dekadal evolution of the ITF position over Ghana 2025.....	2
Figure 2: Current MJO position as of November 3rd Dekad, 2025.....	4
Figure 3a: Total Rainfall November 3rd Dekad, 2025.....	5
Figure 3 b: Rainy Days November 3rd Dekad, 2025.....	5
Figure 4: TAMSAT Total Rainfall November 3rd Dekad, 2025.....	6
Figure 5: Rainfall Anomaly for November 3rd Dekad, 2025	6
Figure 6a: Maximum Temperature November 3rd Dekad, 2025	7
Figure 6b: Maximum Temperature Anomaly November 3rd Dekad, 2025	7
Figure 7a: Minimum Temperature November 3rd Dekad, 2025.....	8
Figure 7b: Minimum Temperature Anomaly November 3rd Dekad, 2025.....	8
Figure 8: Max. and Min. Temperature Distribution for November 3rd Dekad, 2025.....	9
Figure 9a: Average Relative Humidity November 3rd Dekad, 2025	10
Figure 9b: Average Relative Humidity Anomaly November 3rd Dekad, 2025	10

SUMMARY

- **Rainfall:**
 - Most areas in the country received rainfall below 50mm.
 - Akim Oda received the highest rainfall of 117.2 mm.
 - Half Assini recorded the highest rainy days of 7 days.
- **Rainfall Anomalies:**
 - Surplus rainfall was recorded in most areas.
- **Relative Humidity:**
 - Maximum value of 77% was recorded over Axim
 - Minimum value of 26% was recorded over Navrongo.
- **Temperatures:**
 - **Maximum:**
 - Above normal temperatures experienced in most parts of the country.
 - The maximum of the Maximum temperature of 38.3°C was recorded in Tamale and Mankraso.
 - The minimum of the maximum temperature of 29.7°C was recorded in Abetifi.
 - Relatively cooler temperatures along the coast and places in the forested areas.
 - **Minimum:**
 - Above normal temperatures recorded across the entire country
 - Warmer temperatures in the Northern and East Coastal sector
 - The maximum of the Minimum temperature was recorded in Ada, reaching 27.2°C
 - The minimum of the Minimum temperature was recorded in Abetifi, reaching 19.5°C.

1. OBSERVED CLIMATE DRIVERS

1.1 INTERTROPICAL FRONT

Also known as the Intertropical Convergence Zone (ITCZ) is a critical meteorological feature that significantly influences weather patterns in West Africa, including Ghana. The ITF is a boundary zone where the warm, moist air from the Atlantic Ocean (south westerly monsoon winds) meets the hot, dry air from the Sahara Desert (northeasterly Harmattan winds). This convergence leads to the formation of clouds and precipitation, making it a key driver of the rainy season in West Africa. The northward movement of the ITF during March-July brings the rainy season to Ghana.

The table below shows the evolving ITF's position of Ghana, located between 5W and 5E.

Table 1: Dekadal evolution of the ITF position over Ghana 2025

DEKAD	5W	0	5E
January 1	7.2	7.6	7.8
January 2	7.3	7.8	7.5
January 3	7.9	8.2	8.5
February 1	6.6	8.1	8.3
February 2	9.6	9.0	8.8
February 3	8.2	9.2	8.9
March 1	11.0	10.5	10.1
March 2	10.0	9.8	9.6
March 3	11.6	11.6	11.2
April 1	11.1	11.3	11.1
April 2	12.8	11.7	11.1
April 3	13.5	13.1	12.1
May 1	13.9	13.7	12.7
May 2	14.1	13.9	13.8
May 3	14.5	14.7	14.2
June 1	14.4	15.9	16.5
June 2	15.8	15.9	18.1
June 3	16.5	16.4	17.5
July 1	18.1	18.4	17.6
July 2	20.4	20.5	18.5
July 3	20.5	20.9	19.8
August 1	20.1	21.1	18.8

August 2	21	21.1	21.8
August 3	18.5	19.4	21.1
September 1	21.3	21.4	19.8
September 2	20	19.2	17.5
September 3	17.5	17.3	16.6
October 1	15.6	16.3	17
October 2	16.4	15.5	13.8
October 3	11.9	11.4	11
November 1	8.3	9.1	9.8
November 2	6.4	7.2	7.9
November 3	4.6	5.3	6.1

1.2 MADDEN-JULIAN OSCILLATION (MJO)

MJO is a tropical disturbance that moves eastward around the globe, influencing weather patterns, including rainfall and temperature, in various regions. The MJO has phases (1-8), with each phase corresponding to its location over the tropics. Its position and strength can have significant implications for weather in Ghana, particularly during the West African monsoon season.

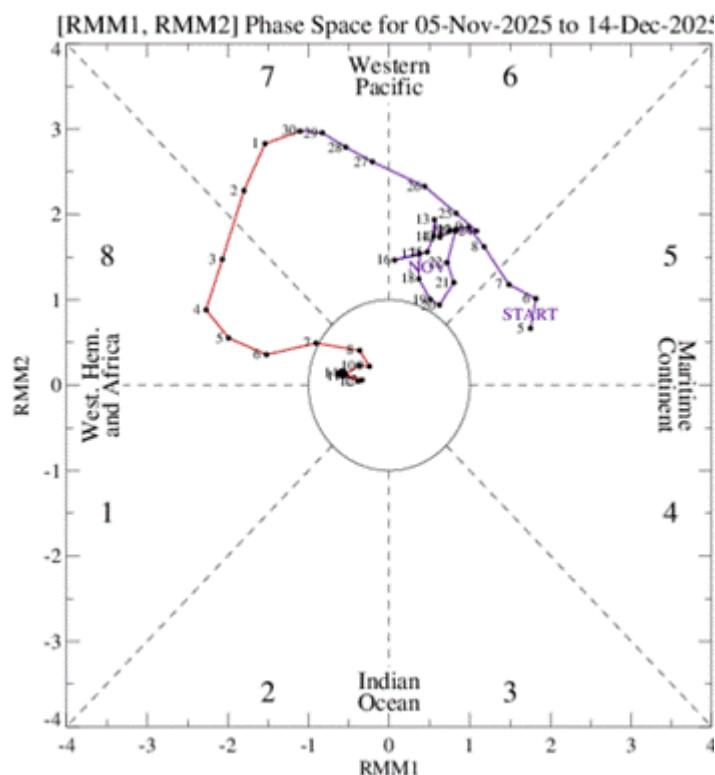


Figure 1: Current MJO position as at November 3rd Dekad, 2025

As depicted in Figure 2, the Madden-Julian Oscillation (MJO) was observed between Phases 6 and 7, corresponding to the Western Pacific regions. However, its position near the centre of the phase-space diagram indicates a weak amplitude, signifying a less active MJO signal during this period.

Given its current phase and weak intensity, the MJO was unlikely to significantly enhance convective activity over West Africa. This may have contributed to the suppression of rainfall over Ghana in the short term, as the influence of the MJO during weak phases tends to be minimal across the region.

2.0 RAINFALL, TEMPERATURE AND RELATIVE DISTRIBUTION

2.1 RAINFALL

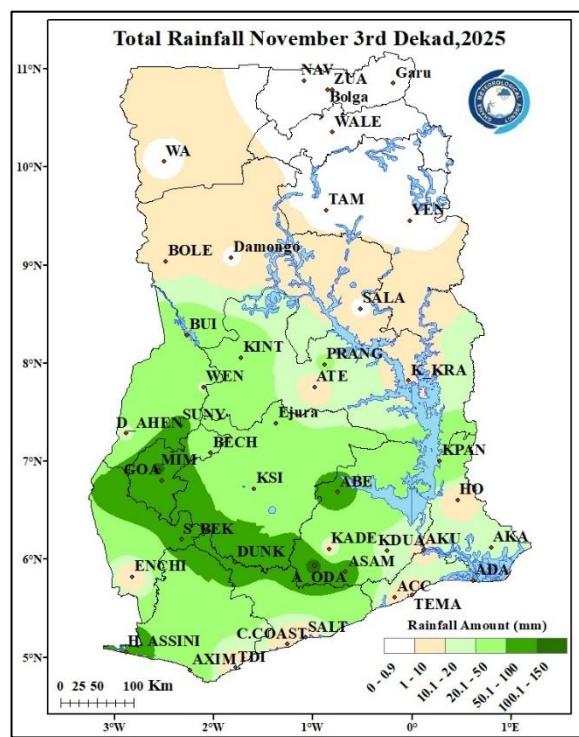


Figure 3a: Total Rainfall November 3rd Dekad, 2025

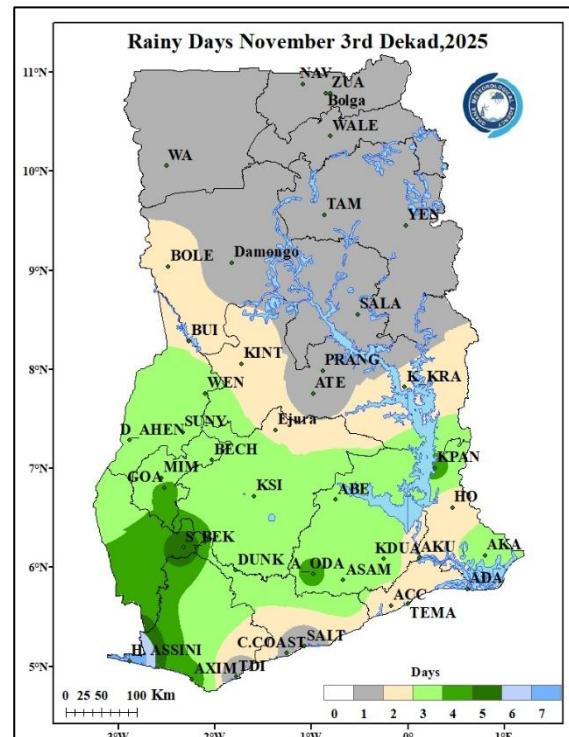


Figure 3 b: Rainy Days November 3rd Dekad, 2025

Figure 3a describes rainfall distribution across Ghana during the third ten-day period (dekad) of November. During this period, Akim Oda recorded the highest total rainfall of 117.2mm. However, stations such as Navrongo, Zuarungu, Bolgatanga, Walewale, Wa, Tamale, Yendi, Damango and Salaga did not record any rainfall. Bole, Atebubu, Kete Krachi, Ho, Akuse, Accra, Saltpond, Cape Coast, Takoradi, Enchi and Kade recorded less than 20mm. Abetifi, Mim, Goaso, Sefwi Bekwai, Dunkwa, Akim Oda, Asamankes and Half Assini recorded rainfall amount between 50-150mm. the rest of the stations recorded rainfall between 20 to 50mm.

Figure 3b shows the frequency of rainy days within the same period. Most stations across the forest zone recorded between three (3) and five (5) rainy days. Half Assin recorded seven (7) days of rainfall activities. The rest of the country experienced less than three (3) rainy days.

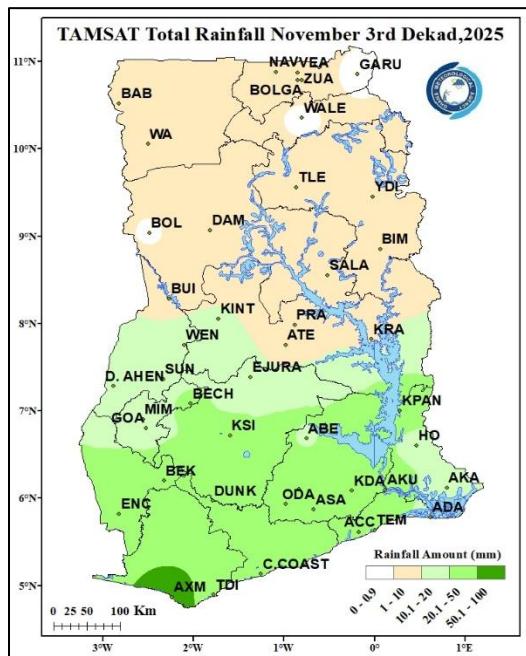


Figure 4: TAMSAT Total Rainfall November 3rd Dekad, 2025

Figure 4 represents total rainfall for the duration, as calculated from the TAMSAT rainfall estimates. The satellite-based data is helpful in terms of nationwide rainfall distribution. It can be seen from the image that the TAMSAT generally reproduced the ground-based observations wherein stations within the northern part and transition part of the country recorded rainfall values below 20mm. Most stations within the southern portion recorded rainfall amount between 20 to 50mm with Axim recording above 50mm of rainfall during the period.

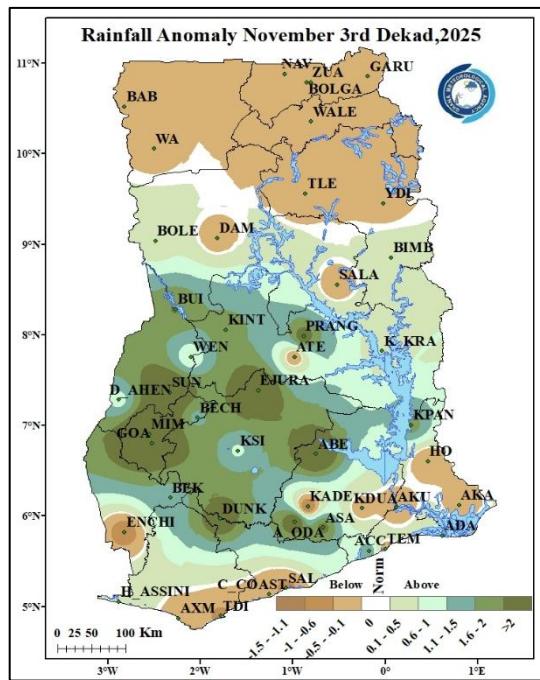


Figure 5: Rainfall Anomaly for November 3rd Dekad, 2025

Figure 5 describes areas across the country that experienced deviations from normal rainfall during the period. Notably, most stations across the Northern part of the country and some few places in the south such as Atebubu, Ho, Akatsi, Akuse, Koforidua, Kade, Tema, Saltpond, Cape Coast, Takoradi, Axim, Enchi and Kade recorded deficit in rainfall amount. On the other hand, places like Bole and Bimbila in the north, Kete Krachi in the transition and the rest of the south experienced surplus rainfall during the period.

2.2 TEMPERATURE

Maximum Temperature

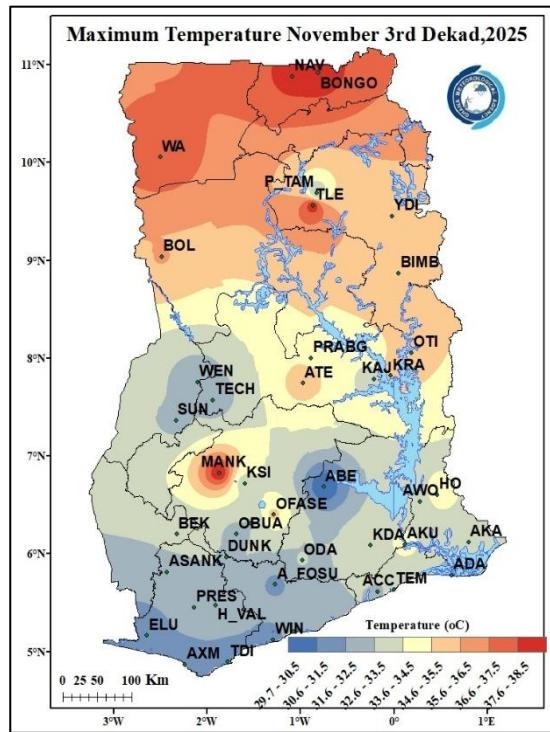


Figure 6a: Maximum Temperature November 3rd Dekad, 2025

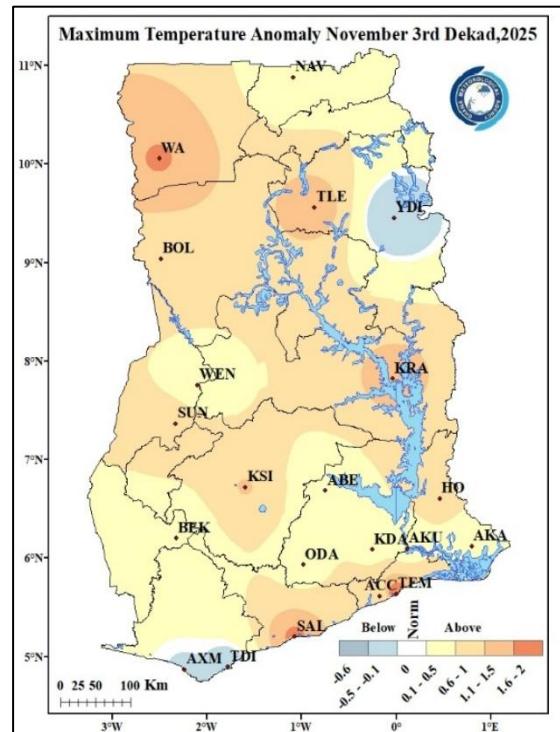


Figure 6b: Maximum Temperature Anomaly November 3rd Dekad, 2025

Figure 6a displays the distribution of average Maximum temperatures nationwide. During the dekad, the northern areas, Oti, Kete Krachi, Atebubu and Mankraso recorded the highest temperatures, ranging from 34.6°C to 38.5°C. Pong Tamale, Prang, Ho, Awudome, Akatsi, Akuse, Koforidua, Akim Oda, Sefwi Bekwai and Ofase recorded temperatures between 32.6°C and 34.5°C. the rest of the country experienced relative cooler day time temperature ranging between 29.7°C and 32.5°C. The highest temperature of 38.3°C, was observed in Mankraso and Tamale, while the lowest, 29.7°C, was recorded in Abetifi.

Figure 6b illustrates the Maximum Temperature Anomalies. Yendi, Axim and Takoradi experienced below normal temperature, whereas the remaining parts of the country experienced above normal temperature during the period.

Minimum Temperature

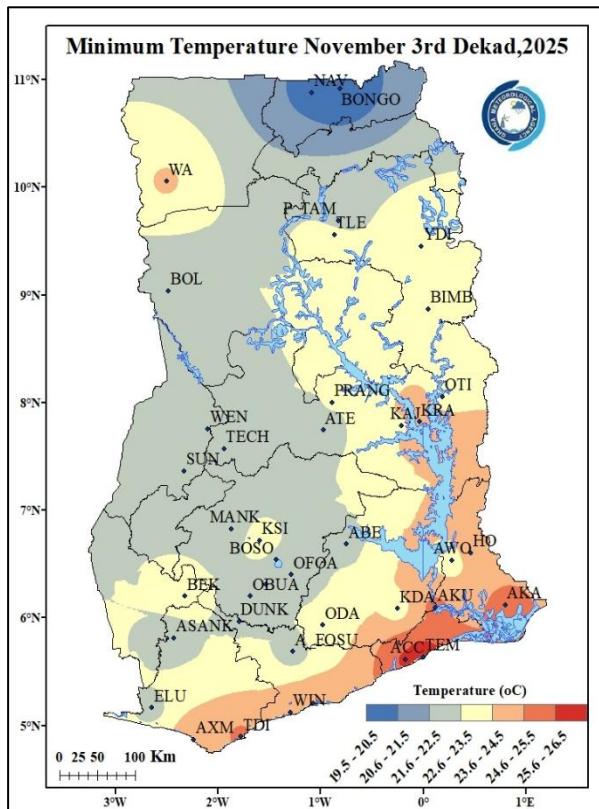


Figure 7a: Minimum Temperature November 3rd Dekad, 2025

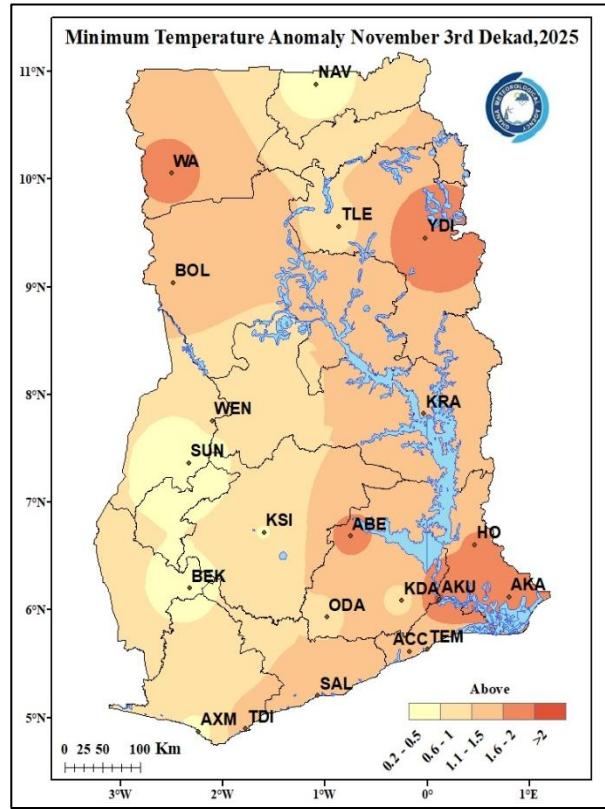


Figure 7b: Minimum Temperature Anomaly November 3rd Dekad, 2025

In *Figure 7a*, the average minimum temperatures varied across the different parts of the country. Places along the coast and some inland areas such as Akuse, Akatsi, Ho, Kete Krachi and Wa experienced relatively warmer conditions with temperatures ranging from 23.6°C to 26.5°C. The highest nighttime temperature recorded in the country for the period was at Ada with a temperature of 27.2°C. the rest of the country recorded relatively cooler nighttime temperatures ranging between 19.5°C and 23.5°C. The least nighttime temperature during the period was recorded at Bongo with a temperature of 19.5°C.

Figure 7b is the Minimum Temperature Anomaly for this period. The entire country experienced above normal night-time temperatures indicating increased night-time temperatures.

Max. and Min. Temperature Distribution, November 3rd Dekad 2025

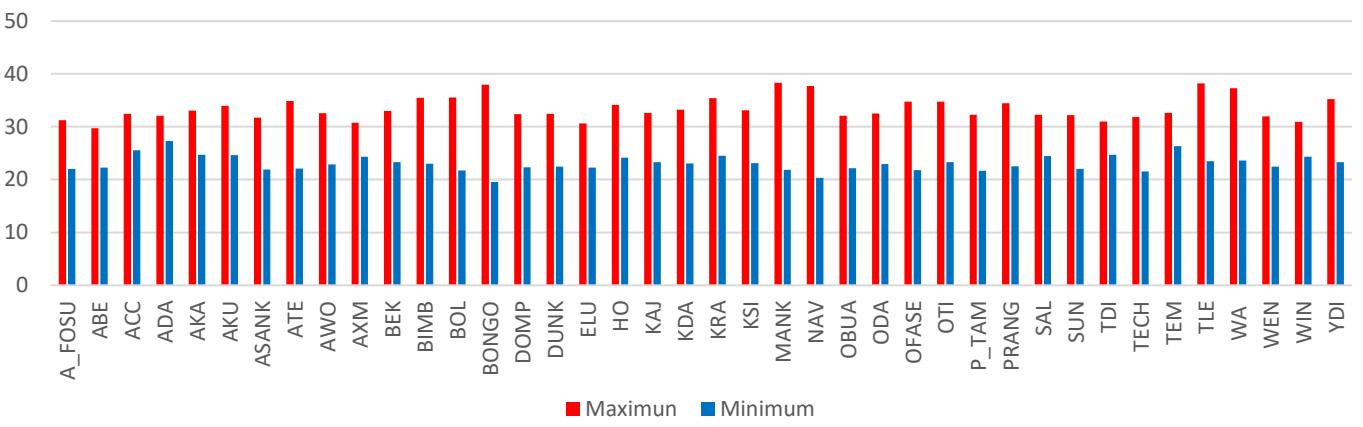


Figure 8: Max. and Min. Temperature Distribution for November 3rd Dekad, 2025

2.3 RELATIVE HUMIDITY

Observed Relative Humidity (RH) over the ten (10) day period is presented in *figure 9a* below. The west coast experienced RH of 70 to 80%. Whereas the forest and east coast experienced RH of 60 to 70%. On the other hand, the Transition experienced RH of 50 to 60% and the Northern areas experienced RH values ranging from 20 to 50 %. A minimum value of 26% was recorded over Navrongo while a maximum value of 77% was recorded over Axim.

Average RH Anomaly is also presented in *Figure 9b* below. A below normal RH is observed across the entire country.

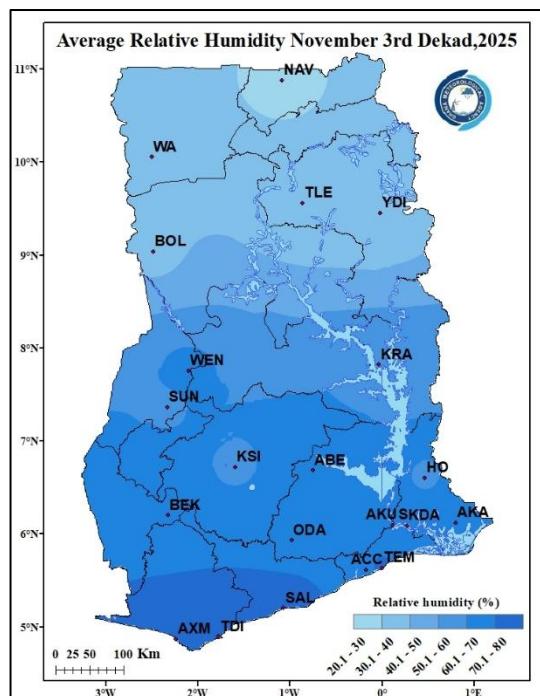


Figure 9a: Average Relative Humidity November 3rd Dekad, 2025

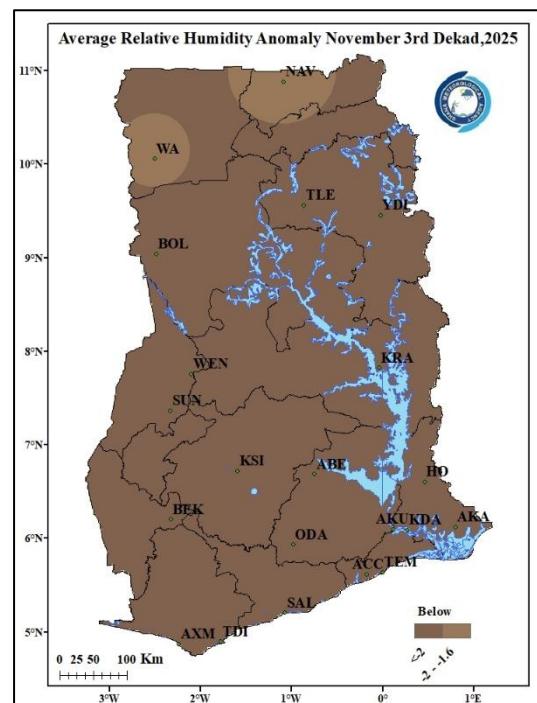
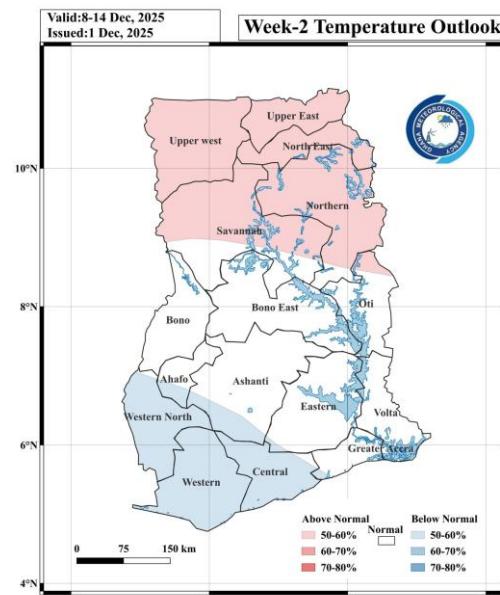
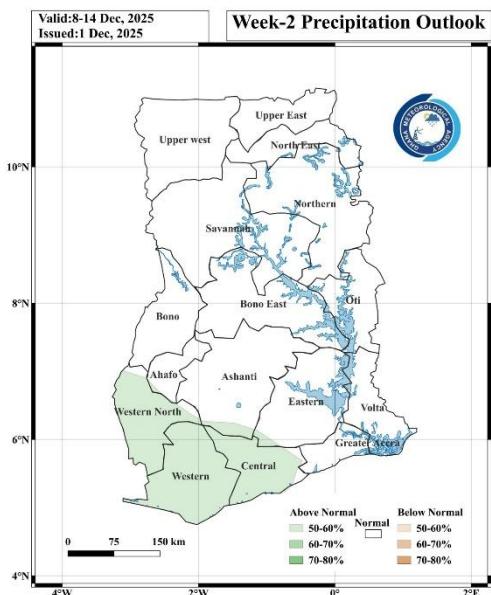
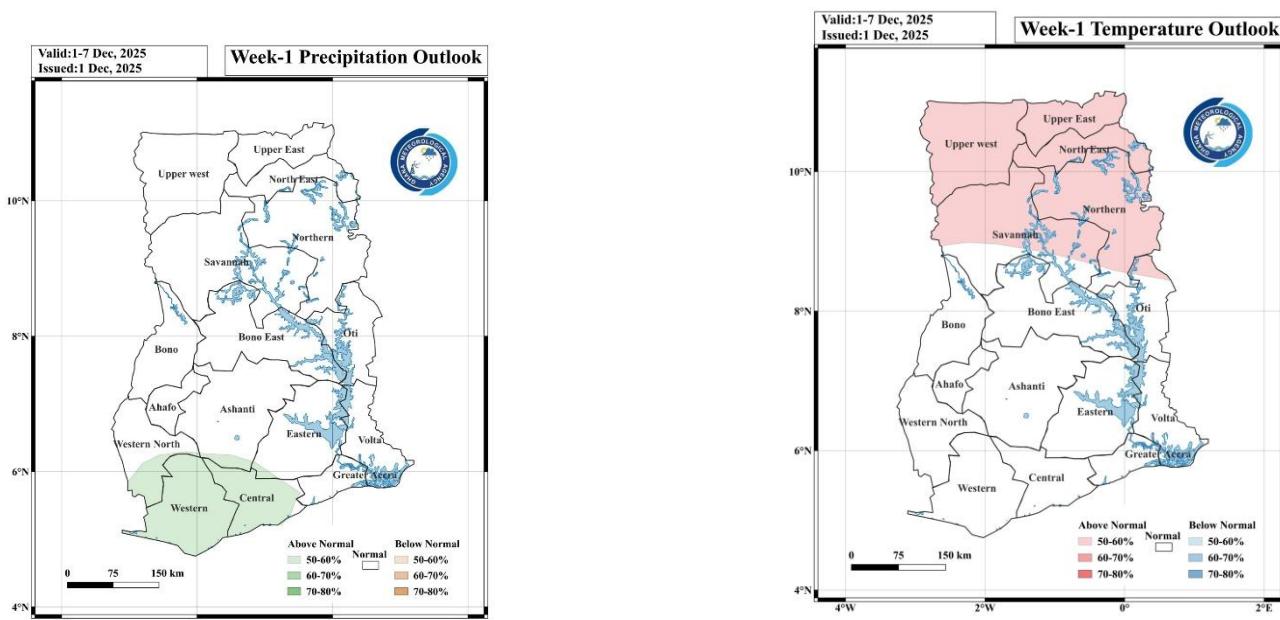





Figure 9b: Average Relative Humidity Anomaly November 3rd Dekad, 2025

3.0 RAINFALL AND TEMPERATURE OUTLOOK 1ST- 14TH DECEMBER 2025

During Week 1, above-normal rainfall is expected at the extreme southwestern parts of the country, while the rest of the country is expected to experience normal rainfall. Temperature conditions are generally expected to be above normal at the northern parts of the country whereas the rest of the country will experience normal temperatures. In Week 2, rainfall is projected to be above-normal across the southwestern portions and normal for the rest of the country. Temperatures during this week are also expected to remain above normal over the northern portions of the country and below normal over the southwestern parts whereas the rest of the country will experience normal temperatures.

4.0 ADVISORIES

1. Agriculture

- Farmers in southwestern zones should take advantage of the expected above-normal rainfall for planting, transplanting, and soil moisture replenishment.
- Farmers in the other parts of the country where normal rainfall is expected, should consider water-conserving practices such as mulching and avoid excessive reliance on rainfall for newly planted crops.
- Irrigation scheduling may be needed in areas expecting reduced rainfall to prevent crop stress.

2. Flood and Drainage Management

- Communities in southwestern belts should clear drainage channels and avoid dumping waste to reduce localized flooding risks due to above-normal rainfall.
- Residents in flood-prone areas should stay alert to weather updates from the Ghana Meteorological Agency.

3. Transportation

- Motorists should exercise caution when driving when it is raining as visibility might become poor. Drivers are advised not to drive through flood waters.

4. Health

- Increased rainfall can promote mosquito breeding; communities are encouraged to clear stagnant water and use protective measures such as insecticide-treated nets.
- Cooler, below-normal temperatures may lead to respiratory infections; warm clothing is advised, especially for children and the elderly.

5. Water Resource Management

- Water managers should store and regulate water efficiently in the southern and middle belts to take advantage of increased runoff.
- In the north, prudent water use is recommended due to expected below-normal rainfall.

6. Energy / Power Sector

- Hydropower generation may benefit from increased inflows in the south and middle zones; monitoring of water levels is advised.

5.0 APPENDIX

5.1 TABLE OF STATIONS

TABLE OF STATIONS

Station	Abbreviation	Station	Abbreviation
Abetifi	ABE	Kete Krachi	K KRA
Accra	ACC	Kade	KADE
Ada	ADA	Koforidua	KDUA
Akatsi	AKA	Kintampo	KINT
Akim Oda	A ODA	Ho	HO
Akuse	AKU	Kpando	KPAN
Asamankese	ASAM	Kumasi	KSI
Atebubu	ATE	Mim	MIM
Axim	AXIM	Navrongo	NAV
Babile	BAB	Prang	PRANG
Bechem	BECH	Sefwi Bekwai	S BEK
Bimbila	BIM	Salaga	SALA
Bole	BOLE	Saltpond	SALT
Bolga	BOLGA	Sunyani	SUNY
Bongo	BON	Pong Tamale	P TAM
Bui	BUI	Tamale	TAM
Cape Coast	C COAST	Takoradi	TDI
Damongo	DAM	Vea	VEA
Dompase	DOM	Asankragua	ASAN
Dormaa Ahenkro	D AHEN	Tema	TEMA
Dunkwa Offin	DUNK	Wa	WA
Ejura	EJURA	Walewale	WALE
Elubo	ELUBO	Obuasi	OBU
Enchi	ENCH	Wenchi	WEN
Garu	GARU	Yendi	YEN
Goa	GOA	Zuarungu	ZUA
Half Assini	H ASS	Assin Fosu	A FOSU
Hunney Valley	H VAL	Winneba	WIN
Konongo	KON	Bosomtwe	BOSOM
Mankrando	MANK	Techiman	TECH
Oti	OTI	Kajaji	KAJ

For further inquiries, clarification, information or assistance Contact:

The Director General

Tel. +233 (0)30 701 0019 or clients@meteo.gov.gh/info@met

Website: www.meteo.gov.gh

: @GhanaMet

: Ghana Meteorological Agency (GMet)

Tel: 0307010019

Email: info@meteo.gov.gh

